Cycle Switches in Latin Squares

نویسنده

  • Ian M. Wanless
چکیده

Cycle switches are the simplest changes which can be used to alter latin squares, and as such have found many applications in the generation of latin squares. They also provide the simplest examples of latin interchanges or trades in latin square designs. In this paper we construct graphs in which the vertices are classes of latin squares. Edges arise from switching cycles to move from one class to another. Such graphs are constructed on sets of isotopy or main classes of latin squares for orders up to and including eight. Variants considered are when (i) only intercalates may be switched, (ii) any row cycle may be switched and (iii) all cycles may be switched. The structure of these graphs reveals special roles played by N2, pan-Hamiltonian, atomic, semi-symmetric and totally symmetric latin squares. In some of the graphs parity is important because, for example, the odd latin squares may be disconnected from the even latin squares. An application of our results to the compact storage of large catalogues of latin squares is discussed. We also prove lower bounds on the number of cycles in latin squares of both even and odd orders and show these bounds are sharp for infinitely many orders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The set of autotopisms of partial Latin squares

Symmetries of a partial Latin square are primarily determined by its autotopism group. Analogously to the case of Latin squares, given an isotopism Θ, the cardinality of the set PLSΘ of partial Latin squares which are invariant under Θ only depends on the conjugacy class of the latter, or, equivalently, on its cycle structure. In the current paper, the cycle structures of the set of autotopisms...

متن کامل

Parity Types, Cycle Structures and Autotopisms of Latin Squares

The parity type of a Latin square is defined in terms of the numbers of even and odd rows and columns. It is related to an Alon-Tarsi-like conjecture that applies to Latin squares of odd order. Parity types are used to derive upper bounds for the size of autotopy groups. A new algorithm for finding the autotopy group of a Latin square, based on the cycle decomposition of its rows, is presented,...

متن کامل

Atomic Latin Squares of Order Eleven

A Latin square is pan-Hamiltonian if the permutation which defines row i relative to row j consists of a single cycle for every i 61⁄4 j. A Latin square is atomic if all of its conjugates are pan-Hamiltonian. We give a complete enumeration of atomic squares for order 11, the smallest order for which there are examples distinct from the cyclic group. We find that there are seven main classes, in...

متن کامل

Orientable Hamilton Cycle Embeddings of Complete Tripartite Graphs I: Latin Square Constructions

Abstract. In an earlier paper the authors constructed a hamilton cycle embedding of Kn,n,n in a nonorientable surface for all n ≥ 1 and then used these embeddings to determine the genus of some large families of graphs. In this two-part series, we extend those results to orientable surfaces for all n 6= 2. In part I, we explore a connection between orthogonal latin squares and embeddings. A pro...

متن کامل

Perfect Factorisations of Bipartite Graphs and Latin Squares Without Proper Subrectangles

A Latin square is pan-Hamiltonian if every pair of rows forms a single cycle. Such squares are related to perfect 1-factorisations of the complete bipartite graph. A square is atomic if every conjugate is pan-Hamiltonian. These squares are indivisible in a strong sense – they have no proper subrectangles. We give some existence results and a catalogue for small orders. In the process we identif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Graphs and Combinatorics

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2004